skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 29, 2026
  2. Free, publicly-accessible full text available January 19, 2026
  3. Free, publicly-accessible full text available December 8, 2025
  4. We propose a rapid restoration strategy against PNE-node failure during postdisaster cooperation among DC providers and optical-network carriers. Our strategy reduces disruption and improves DC-service restoration by 35% in 20% less time compared to baseline. 
    more » « less
  5. Cooperation among telecom carriers and datacenter (DC) providers (DCPs) is essential to ensure resiliency of network-cloud ecosystems. To enable efficient cooperative recovery in case of resource crunch, e.g., due to traffic congestion or network failures, we previously studied several frameworks for cooperative recovery among different stakeholders (e.g., telecom carriers and DCPs). Now, we introduce a novel Multi-entity Cooperation Platform (MCP) for implementing cooperative recovery planning, to achieve efficient use of carriers’ valuable optical-network resources during recovery. We adopt a Distributed Ledger Technology (DLT) that ensures decentralized and tamper-proof information exchange among stakeholders to achieve open and fair cooperation. To support diverse types of cooperation, we develop a state machine representing the MCP operation and define state transitions associated to stakeholders’ cooperation within the state machine. Moreover, we propose a signaling system in MCP to ensure simple and reliable state transitions for stakeholders during the cooperative recovery planning in large ecosystems. We experimentally demonstrate a proof-of-concept DLT-based MCP on a testbed. We showcase a DCP-carrier cooperative planning process, showing the flexibility of the proposed MCP to support diverse types of cooperation. 
    more » « less